Physical Sources of High‐Frequency Seismic Noise on Cascadia Initiative Ocean Bottom Seismometers

TitlePhysical Sources of High‐Frequency Seismic Noise on Cascadia Initiative Ocean Bottom Seismometers
Publication TypeJournal Article
Year of Publication2020
AuthorsHilmo, R, Wilcock, WSD
JournalGeochemistry Geophysics Geosystems
Type of ArticleJournal Article
Abstract

Physical sources of high-frequency seismic noise in the ocean are investigated using data from the Cascadia Initiative (CI) ocean bottom seismometer (OBS) network, hindcasts of wind speed, waves, and the bottom currents predicted by a regional ocean circulation model and observed at sites on cabled observatories. Seismic data in the 5–12 Hz band are considered because it is best for detecting regional earthquakes and lies between the frequencies of local microseisms and the seasonal whale calls. Median noise levels in this range vary by ~20 dB between sites at a given depth but on average decrease with increasing depth. On the continental shelf, the orbital motions of ocean waves are a major source of noise while at the quietest sites in the deep ocean, noise increases when wind speeds exceed ~10 m/s. On the continental slope and abyssal plain within about 100 km of the slope, seismic noise is not predicted at specific sites by the bottom currents in the ocean circulation model. In these regions, ocean currents are inferred to be the primary source of noise, because noise varies on tidal periods, is low on buried seismometers, and has spatial variations broadly consistent with those of median absolute currents. Comparisons between OBSs suggest that high-frequency noise is reduced by low-profile hydrodynamic designs but not by shielding. Many OBSs also record numerous short duration events on and near the continental shelf that have been attributed elsewhere to animals bumping into the sensor or gas bubbles moving through sediments.

DOI10.1029/2020gc009085
Array

Regional Cabled

Bibliometrics